The Universal Maximal Operator on Special Classes of Functions
نویسنده
چکیده
We prove pointwise inequalities for the maximal operator over all the directions in R when acting on l-radial functions and on product functions. From these inequalities we deduce boundedness results on L for p > n; these can be applied to other operators, in particular to the Kakeya maximal operator.
منابع مشابه
On convolution properties for some classes of meromorphic functions associated with linear operator
In this paper, we defined two classes $S_{p}^{ast }(n,lambda ,A,B)$ and\ $ K_{p}(n,lambda ,A,B)$ of meromorphic $p-$valent functions associated with a new linear operator. We obtained convolution properties for functions in these classes.
متن کاملOn a linear combination of classes of harmonic $p-$valent functions defined by certain modified operator
In this paper we obtain coefficient characterization, extreme points and distortion bounds for the classes of harmonic $p-$valent functions defined by certain modified operator. Some of our results improve and generalize previously known results.
متن کاملHigher order close-to-convex functions associated with Attiya-Srivastava operator
In this paper, we introduce a new class$T_{k}^{s,a}[A,B,alpha ,beta ]$ of analytic functions by using a newly defined convolution operator. This class contains many known classes of analytic and univalent functions as special cases. We derived some interesting results including inclusion relationships, a radius problem and sharp coefficient bound for this class.
متن کاملSome properties of extended multiplier transformations to the classes of meromorphic multivalent functions
In this paper, we introduce new classes $sum_{k,p,n}(alpha ,m,lambda ,l,rho )$ and $mathcal{T}_{k,p,n}(alpha ,m,lambda ,l,rho )$ of p-valent meromorphic functions defined by using the extended multiplier transformation operator. We use a strong convolution technique and derive inclusion results. A radius problem and some other interesting properties of these classes are discussed.
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کامل